Kerneltron: support vector "machine" in silicon
نویسندگان
چکیده
منابع مشابه
Kerneltron: Support Vector 'Machine' in Silicon
Detection of complex objects in streaming video poses two fundamental challenges: training from sparse data with proper generalization across variations in the object class and the environment; and the computational power required of the trained classifier running real-time. The Kerneltron supports the generalization performance of a support vector machine (SVM) and offers the bandwidth and eff...
متن کاملSilicon Support Vector Machine with On-Line Learning
Training of support vector machines (SVMs) amounts to solving a quadratic programming problem over the training data. We present a simple on-line SVM training algorithm of complexity approximately linear in the number of training vectors, and linear in the number of support vectors. The algorithm implements an on-line variant of sequential minimum optimization (SMO) that avoids the need for adj...
متن کاملLeast Squares Support Vector Machine for Constitutive Modeling of Clay
Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of...
متن کاملUsing Wavelet Support Vector Machine for Fault Diagnosis of Gearboxes
Identifying fault categories, especially for compound faults, is a challenging task in mechanical fault diagnosis. For this task, this paper proposes a novel intelligent method based on wavelet packet transform (WPT) and multiple classifier fusion. An unexpected damage on the gearbox may break the whole transmission line down. It is therefore crucial for engineers and researchers to monitor the...
متن کاملMonthly rainfall Forecasting using genetic programming and support vector machine
Rainfall and runoff estimation play a fundamental and effective role in the management and proper operation of the watershed, dams and reservoirs management, minimizing the damage caused by floods and droughts, and water resources management. The optimal performance of intelligent models has increased their use to predict various hydrological phenomena. Therefore, in this study, two intelligent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Neural Networks
سال: 2003
ISSN: 1045-9227
DOI: 10.1109/tnn.2003.816345